SL Paper 2

Consider the matrix

$$oldsymbol{A} = egin{bmatrix} \lambda & 3 & 2 \ 2 & 4 & \lambda \ 3 & 7 & 3 \end{bmatrix}.$$

Suppose now that $\lambda=1$ so consider the matrix

	$\lceil 1 \rceil$	3	2	
B =	2	4	1	
	3	7	3	

a.i. Find an expression for det(A) in terms of λ , simplifying your answer.	
a.ii.Hence show that A is singular when $\lambda=1$ and find the other value of λ for which A is singular.	[2]
b.i. Explain how it can be seen immediately that B is singular without calculating its determinant.	[1]
b.iiDetermine the null space of B .	[4]
b.iiiExplain briefly how your results verify the rank-nullity theorem.	[[N/A
c. Prove, using mathematical induction, that	[7]

$$oldsymbol{B}^n=8^{n-2}oldsymbol{B}^2$$
 for $n\in\mathbb{Z}^+,\ n\geqslant 3.$

The hyperbola with equation $x^2 - 4xy - 2y^2 = 3$ is rotated through an acute anticlockwise angle lpha about the origin.

a. The point (x, y) is rotated through an anticlockwise angle α about the origin to become the point (X, Y). Assume that the rotation can be [3] represented by

$$egin{bmatrix} X \ Y \end{bmatrix} = egin{bmatrix} a & b \ c & d \end{bmatrix} egin{bmatrix} x \ y \end{bmatrix}.$$

Show, by considering the images of the points (1, 0) and (0, 1) under this rotation that

$$egin{bmatrix} a & b \ c & d \end{bmatrix} = egin{bmatrix} \coslpha & -\sinlpha \ \sinlpha & \coslpha \end{bmatrix}$$

b.i. By expressing (x, y) in terms of (X, Y), determine the equation of the rotated hyperbola in terms of X and Y.

b.ii.Verify that the coefficient of XY in the equation is zero when $\tan \alpha = \frac{1}{2}$.

 $-\frac{1}{2}$. [3]

b.iiDetermine the equation of the rotated hyperbola in this case, giving your answer in the form $rac{X^2}{A^2}-rac{Y^2}{B^2}=1.$

[3]

[3]

S is defined as the set of all 2 imes 2 non-singular matrices. A and B are two elements of the set S.

a. (i) Show that
$$(A^T)^{-1} = (A^{-1})^T$$
. [8]

(ii) Show that
$$(AB)^T = B^T A^T$$
.

b. A relation R is defined on S such that A is related to B if and only if there exists an element X of S such that $XAX^T = B$. Show that R is an [8] equivalence relation.

The matrix
$$\boldsymbol{A}$$
 is given by $\boldsymbol{A} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 8 & 11 & 8 \\ 1 & 3 & 4 & \lambda \\ \lambda & 5 & 7 & 6 \end{pmatrix}$.
(a) Given that $\lambda = 2, \boldsymbol{B} = \begin{pmatrix} 2 \\ 4 \\ \mu \\ 3 \end{pmatrix}$ and $\boldsymbol{X} = \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix}$,

- (i) find the value of μ for which the equations defined by AX = B are consistent and solve the equations in this case;
- (ii) define the rank of a matrix and state the rank of *A*.
- (b) Given that $\lambda = 1$,
- (i) show that the four column vectors in A form a basis for the space of four-dimensional column vectors;

(ii) express the vector $\begin{pmatrix} 6\\28\\12\\15 \end{pmatrix}$ as a linear combination of these basis vectors.

The set of all permutations of the list of the integers $1, 2, 3 \dots n$ is a group, S_n , under the operation of composition of permutations.

Each element of S_4 can be represented by a 4×4 matrix. For example, the cycle $(1\ 2\ 3\ 4)$ is represented by the matrix

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$
 acting on the column vector $\begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$.

- a. (i) Show that the order of S_n is n!;
 - (ii) List the 6 elements of S_3 in cycle form;
 - (iii) Show that S_3 is not Abelian;
 - (iv) Deduce that S_n is not Abelian for $n \ge 3$.

[9]

- b. (i) Write down the matrices M_1 , M_2 representing the permutations (1 2), (2 3), respectively;
 - (ii) Find M_1M_2 and state the permutation represented by this matrix;
 - Find $det(\mathbf{M}_1)$, $det(\mathbf{M}_2)$ and deduce the value of $det(\mathbf{M}_1\mathbf{M}_2)$. (iii)
- c. (i) Use mathematical induction to prove that
 - $(1\ n)(1\ n\ -1)(1\ n\ -2)\dots(1\ 2)=(1\ 2\ 3\dots n)\ n\in\mathbb{Z}^+,\ n>1.$
 - Deduce that every permutation can be written as a product of cycles of length 2. (ii)
- a. Given that the elements of a 2×2 symmetric matrix are real, show that
 - (i) the eigenvalues are real;
 - the eigenvectors are orthogonal if the eigenvalues are distinct. (ii)
- b. The matrix **A** is given by

$$oldsymbol{A} = egin{pmatrix} 11 & \sqrt{3} \ \sqrt{3} & 9 \end{pmatrix}.$$

Find the eigenvalues and eigenvectors of **A**.

- c. The ellipse E has equation $\mathbf{X}^T \mathbf{A} \mathbf{X} = 24$ where $\mathbf{X} = \begin{pmatrix} x \\ y \end{pmatrix}$ and \mathbf{A} is as defined in part (b). [7]
 - Show that E can be rotated about the origin onto the ellipse E' having equation $2x^2 + 3y^2 = 6$. (i)
 - Find the acute angle through which E has to be rotated to coincide with E'. (ii)

The function
$$f : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$$
 is defined by $X \mapsto AX$, where $X = \begin{bmatrix} x \\ y \end{bmatrix}$ and $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ where a, b, c, d are all non-zero.

Consider the group $\{S,+_m\}$ where $S=\{0,1,2\ldots m-1\}$, $m\in\mathbb{N}$, $m\geq 3$ and $+_m$ denotes addition modulo m .

A.aShow that f is a bijection if A is non-singular.

A.bSuppose now that \boldsymbol{A} is singular.

- (i) Write down the relationship between a, b, c, d.
- (ii) Deduce that the second row of A is a multiple of the first row of A.
- Hence show that f is not a bijection. (iii)

B.aShow that $\{S, +_m\}$ is cyclic for all m.

B.bGiven that *m* is prime,

- (i) explain why all elements except the identity are generators of $\{S, +_m\}$;
- find the inverse of x, where x is any element of $\{S, +_m\}$ apart from the identity; (ii)
- determine the number of sets of two distinct elements where each element is the inverse of the other. (iii)

[8]

[7]

[11]

[3]

[7]

[7]

[5]

[5]

a. By considering the points $(1,\ 0)$ and $(0,\ 1)$ determine the 2 imes 2 matrix which represents

- (i) an anticlockwise rotation of $\boldsymbol{\theta}$ about the origin;
- (ii) a reflection in the line y = (an heta) x.
- b. Determine the matrix A which represents a rotation from the direction $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ to the direction $\begin{pmatrix} 1 \\ 3 \end{pmatrix}$. [2]

c. A triangle whose vertices have coordinates (0, 0), (3, 1) and (1, 5) undergoes a transformation represented by the matrix $A^{-1}XA$, where X [6] is the matrix representing a reflection in the *x*-axis. Find the coordinates of the vertices of the transformed triangle.

d. The matrix $B = A^{-1}XA$ represents a reflection in the line y = mx. Find the value of m.

[6]